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It is a curious and may be considered as an important problem in the Calculus of Dif-
ferences, to assign an expression for the sum of the series
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which differs from the series for A™z™ only by its introducing teh coefficients u, determined
by the conditions that

u; =+1, 0, or — 1, according as x +1i >0, =0, or <O0. (2.)

These conditions may be expressed by the formula

u; = —/ %sin(wt + it); (3.)
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and if we observe that
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we shall see that the series (1.) may be put under the form
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the characteristic A of difference being referred to x. But
Asin(2azx + () = 2sinasin (2aac +08+a+ g) ,
A"sin(2ax + ) = (2sina)” sin <2aw + B+ na+ %) ;

therefore, changing ¢, in (4.) to 2a, we find
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if we make, for abridgment,

2
A = —sina" sin(2za + na). (6.)
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Again, the process of integration by parts gives
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provided that the function _
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vanishes both when a@ = 0 and when o = 00, and does not become infinite for any intermediate
value of «, conditions which are satisfied here; we have, therefore, finally,
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we shall have the expression
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as a transformation of the formula
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each partial series being continued only as far as the quantities raised to the nth power are
positive. Laplace has arrived at an equivalent transformation, but by a much less simple
analysis.



